基于新型调制方案的 PS-RZ-QPSK 信号在 高速光传输系统中的应用

徐 蕾 张阳安 张锦南 林 密

(北京邮电大学信息光子学与光通信国家重点实验室,北京 100876)

摘要 研究了偏振切换-正交相移键控(PS-QPSK)和双偏振-正交相移键控(DP-QPSK)信号的产生原理,理论分析 了 PS-QPSK 信号的性能优势。针对偏振切换-归零-正交相移键控(PS-RZ-QPSK)信号,提出了一种新的调制方 案,方案在保持 PS-RZ-QPSK 信号优势的同时减少了发送端使用的马赫曾德尔调制器(MZM)的数量,大大降低了 发射机成本。通过仿真结果分析得出在相同比特率(84 Gb/s)和相同波特率(28 GBd)条件下,PS-RZ-QPSK 比双 偏振-归零-正交相移键控(DP-RZ-QPSK)信号具有更好的传输性能,验证了该方案的可行性。 关键词 光通信;高速光传输系统;偏振切换正交相移键控;新型调制方式;相干接收;双偏振正交相移键控

Application of a Novel Modulation Scheme of PS-RZ-QPSK Signal in High-Speed Optical Transmission System

Xu Lei Zhang Yang'an Zhang Jinnan Lin Mi

(State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China)

Abstract Modulation principle of dual-polarization quadrature phase shift keying (DP-QPSK) signal and polarizationswitched quadrature phase shift keying (PS-QPSK) signal are demonstrated and advantages of PS-QPSK are proved in theoretically. A novel modulation scheme of PS-return-to-zero(RZ)-QPSK signal is proposed. The scheme reduces transmitter cost by less use of Mach-Zehnder modulator (MZM), but also presents similar performance as traditional structure for PS-RZ-QPSK. The simulation results indicate PS-RZ-QPSK can achieve a better transmission performance than DP-RZ-QPSK at the same bit rate (84 Gb/s) and baud rate (28 GBd), and prove the feasibility of novel modulation scheme.

Key words optical communications; high-speed optical transmission system; polarization-switched quadrature phase shift keying; novel modulation scheme; coherent detection; dual-polarization quadrature phase shift keying **OCIS codes** 060.4510; 060.4370; 060.5060; 060.1660

1 引 言

随着大容量、高速光通信系统的发展,高效地补 偿色散、偏振模色散和非线性效应等各类损伤引起 的影响极其重要^[1~3]。数字光通信系统中采用的电 信号处理技术,如先进纠错编码技术、编码调制技术 以及接收机光电处理技术等都表现出极好的抑制损 伤能力。由于相干技术的发展,偏分复用技术^[4]尤 其是四维(同相相位、正交相位、X偏振态及Y偏振 态)信号格式备受瞩目。相比于双偏振-正交相移键 控(DP-QPSK)信号,偏振切换-正交相移键控(PS-QPSK)信号具有更好的接收机灵敏度。

在文献[5~7]中提到 PS-QPSK 调制是功率利

收稿日期: 2012-05-25; 收到修改稿日期: 2012-07-04

基金项目:中央高校基本科研业务费专项资金(2009RC0401)、青年科研创新计划专项资金(2011PTB-00-31、2012RC0407、2012RC0406)资助课题。

作者简介: 徐 蕾(1988—),女,硕士研究生,主要从事高速光通信方面的研究。E-mail: xuleibupt@bupt.edu.cn 导师简介: 张阳安(1972—),男,博士,副教授,主要从事光纤通信系统方面的研究。E-mail: zhang@bupt.edu.cn

用率最高的调制方式。相比于二进制相移键控 (BPSK),该信号具有更大的传输速率、更窄的光谱 和更大的色散容限,抗非线性效应更好。对 PS-QPSK 信号进行归零(RZ)调制得到的偏振切换-归 零-正交相移键控(PS-RZ-QPSK)信号虽然频谱宽 度增大,但是降低了发射功率,相比 PS-QPSK 信号 而言,还具有更好的抗非线性效应能力。此外,PS-RZ-QPSK 信号具有更好的抵抗码间于扰的能力。

本文提出了一种 PS-RZ-QPSK 信号新的实现 方案并验证了该方案的可行性。传统的 PS-RZ-QPSK 信号一般是通过在产生 PS-QPSK 信号之后 串联一个马赫曾德尔调制器(MZM)^[8]对 PS-QPSK 信号进行 RZ 码型调制得到 PS-RZ-QPSK 信号。本 文针对 PS-RZ-QPSK 信号的实现方式进行了优化, 仅利用一个 MZM 完成数据的加载和 RZ 码型调 制,大大降低了系统成本。通过对新型实现方案的 PS-RZ-QPSK 信号的传输性能进行分析,并与传统 的 PS-RZ-QPSK 信号和 DP-RZ-QPSK 信号进行比 较可以看出,新型实现方案在性能上与传统调制达 到相同量级。

2 原理说明

四维信号的维度包括两个相位(同相、正交)和 两个偏振方向(X方向、Y方向),可以用矢量($E_{x,i}$, $E_{x,q}$, $E_{y,i}$, $E_{y,q}$)来表示四维信号的星座图矢量。DP-QPSK 信号利用 4 路并行数据在信号的两个正交偏 振态 X和 Y 上分别进行 QPSK 调制,共有 16 种状 态,可用集合 $C_1 = \{\pm 1, \pm 1, \pm 1, \pm 1\}$ 来表示 DP-QPSK 的归一化星座集群^[5,6]。

PS-QPSK 是利用 3 路并行的数据进行调制,可 以理解为其中两路数据进行 QPSK 调制,另一路数 据决定光的偏振态是 X 还是 Y。所以,PS-QPSK 信号有 8 种状态。从矢量角度来分析,这种调制方 式产生的信号对应的星座集群^[5,6]可由 $C_2 = \{(\pm 2, 0, 0, 0), (0, \pm 2, 0, 0), (0, 0, \pm 2, 0), (0, 0, 0, \pm 2)\}$ 进行 45°的相位偏移得到的 $C'_2 = \sqrt{2}\{(\pm 1, \pm 1, 0, 0), (0, 0, \pm 1, \pm 1)\}$ 来表示。类似的,可以推断出对 C'_2 进行 45°偏振态偏移可得到新的星座集群 $C''_2 = \pm \{(1, 1, 1, 1), (1, 1, -1, -1), (1, -1, -1, 1), (1, -1, -1, -1)\}$,这便是 PS-QPSK 信号的另一种矢量 表示方式。由前面的分析可知 C'_2 和 C''_2 都是 C_2 的同 构异形体,在信号性能上,如果对星座图最短距离、 星座图能量等方面进行分析,它们表现出来的性能 是一致的。由 C_1 和 C_2 得到 DP-QPSK 信号和 PS-QPSK 信号的误符号率(SER)的理论值^[6]分别为 R_{SE1} 和 R_{SE2} ,表达式为

$$R_{\text{SE1}} = 1 - \left[1 - \frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{E_s}{4N_0}}\right)\right]^4,$$

$$R_{\text{SE2}} = 1 - \frac{1}{\sqrt{\pi}} \int_0^\infty \left[1 - \operatorname{erfc}(x)\right]^3 \times \exp\left[-\left(x - \sqrt{\frac{E_s}{N_0}}\right)^2\right] dx.$$
(1)

可以发现,DP-QPSK 信号相当于4 路并行的 BPSK 信号,且满足格雷映射,而 PS-QPSK 信号不 满足格雷映射,两者的误码率(BER)^[6]可分别表 示为

$$R_{\rm BE1} = (1/2) \, {
m erfc} \left(\sqrt{E_{\rm b}/N_{\rm 0}} \right), \, R_{\rm BE2} \approx R_{\rm SE2}/2$$
(2)

相同误码率条件下,信号相比 BPSK 信号的灵 敏度增益可定义为 $\gamma = d_{\min}^2 2/(4E_b)^{[5]}$,可以计算出 PS-QPSK 信号的接收灵敏度($\gamma = 10 \times \lg(3/2) dB =$ 1.76 dB)比 DP-QPSK 信号($\gamma = 0$ dB)高出将近 2 dB。

3 新型调制方案的提出

利用 C₂, C₂ 这两种矢量表达形式,可以得到 PS-QPSK 信号的两种实现方式。对应 C₂ 的实现方式 是利用两路数据对光源进行 QPSK 调制,另一路数 据控制光信号偏振态的转换。对应于 C₂ 的实现方 式可以直接利用 DP-QPSK 信号的调制器,只需在 DP-QPSK 调制器之前对数据进行一些处理,这种 方式也更易实现。

DP-QPSK 调制器采用图 1 所示的结构。首先 利用偏振分离器将光源分为 X 偏振态和 Y 偏振态 的两束光,再利用两个并联的 MZM 对两束光分别 进行 QPSK 调制^[9],相当于每个 MZM 实现一路数

图 1 DP-QPSK 信号发射机框图 Fig. 1 Block diagram of DP-QPSK transmitter

据的 BPSK 调制。将调制后的光信号用偏振结合器 恢复成一路光信号,此信号即为 DP-QPSK 信号。 再利用一个 MZM 对 DP-QPSK 信号进行 RZ 码型 调制,即可得到 DP-RZ-QPSK 信号。

图 2 所示是 PS-QPSK 信号的两种实现方式, 图 2(a)对应的矢量集是 C₂,图 2(b)对应的矢量集 是 C₂["]。这里主要采用的是图 2(b)中的实现方式。 传统方式下, RZ 码型切割通过串联一个 MZM 来实现^[8], 如图 2(b)所示。所提出的新方案的优势 在于不必添加额外的 MZM 即可实现 RZ 调制。通 过对 QPSK 调制器(图 1 中的 QPSK Tx)中的每一 个 MZM 设置恰当的偏置电压、调制电压和时钟信 号等参数,同时实现相位调制和 RZ 码型切割,具体 实现框图如图 3 所示。

图 2 PS-QPSK 信号产生框图。(a) C'₂; (b) C''₂ Fig. 2 Block diagram of PS-QPSK modulator. (a) C'₂; (b) C''₂

图 3 采用单个 MZM 的实现框图

Fig. 3 Block diagram with a single MZM MZM 的输出为^[10]

$$E_{\text{out}}(t) = E_{\text{in}}(t) \exp\left[j\frac{\varphi_1(t) + \varphi_2(t)}{2}\right] \times \cos\left[\frac{\varphi_1(t) - \varphi_2(t)}{2}\right], \quad (3)$$

式中 exp $\left[j\frac{\varphi_{1}(t) + \varphi_{2}(t)}{2}\right]$ 部分会导致输出光强相 位的变化,cos $\left[\frac{\varphi_{1}(t) - \varphi_{2}(t)}{2}\right]$ 部分会导致输出光 强幅度的变化。

在该方案中, MZM 的两臂输入不对称,将处理 后的数据和时钟同时输入 MZM 中,设置恰当的参 数就可实现同时调幅调相。定义调制器的开关电压 为 V_{π} ,时钟信号为 $V_{m}\cos 2\pi Bt$,其中 V_{m} 为正弦时 钟信号的幅度, B为单路数据传输的比特率。由此 得到(3)式中 φ_{1} 和 φ_{2} 的表达式为

$$\begin{split} \varphi_{1}(t) &= \frac{\pi}{V_{\pi}} \begin{bmatrix} V_{\mathrm{D}} D(t) + V_{\mathrm{m}} \cos(2\pi Bt) + V_{\mathrm{bias1}} \end{bmatrix}, \\ \varphi_{2}(t) &= \frac{\pi}{V_{\pi}} \begin{bmatrix} V_{\mathrm{D}} D(t) - V_{\mathrm{m}} \cos(2\pi Bt) + V_{\mathrm{bias2}} \end{bmatrix}, \end{split}$$

式中 D(t) 为传输的归一化数据,即'0'和'1'。 $V_{\rm D}$ 为数据进行非归零(NRZ)调制后的信号幅度。 MZM 的偏置电压满足 $V_{\rm bias1} = -V_{\rm bias2} = V_{\rm b}$ 。为了实现相位调制,NRZ 数据的幅度 $V_{\rm D}$ 应该与开关电压 V_{π} 相等;要得到占空比为 50%的 RZ 信号,需设置 $V_{\rm m} = V_{\rm b} = V_{\pi}/4^{[10]}$ 。于是(3)式可转换为

 $E_{\rm out}(t) = E_{\rm in}(t) \exp[j\pi D(t)] \times$

$$\cos\left[\frac{\pi}{4}\cos(2\pi Bt) + \frac{\pi}{4}\right].$$
 (5)

结合(5)式,利用图 1 中的 QPSK 调制器得到 的 QPSK 信号对应的相位如表 1 所示。

表 1 QPSK 信号的输入与输出光信号相位的关系

Table 1 Relationship of output optical signals and input QPSK signals

In-phase signal	0	0	1	1
Quadrature signal	0	1	1	0
Phase	j+1	j-1	-j-1	-j+1

DP-QPSK 和 PS-QPSK 信号在相干解调时只 需利用偏振分离器将光信号分为两个正交偏振光, 再分别进行相干解调即可恢复出数据信息^[11]。相 干解调的原理框图如图 4 中的相干接收部分所示。

图 4 PS-advanced-RZ-QPSK 信号的传输系统框图 Fig. 4 Block diagram of transmission system of PS-advanced-RZ-QPSK signals

4 结果分析

系统采用的光源和本振光均为线宽 100 kHz 的激光器。由于 PS-RZ-QPSK 同时传输 3 路数据, 而 DP-QPSK 同时传输 4 路数据,分别对单路速率 28 GBd 的 DP-RZ-QPSK 和 PS-RZ-QPSK 信号和 单路速率 21 GBd 的 DP-RZ-QPSK 信号进行了仿 真,可以得到相同比特率和相同波特率下两种系统 的性能区别。其中,采用本文提出的调制方案的 PS-RZ-QPSK 信号用 PS-advanced-RZ-QPSK 表示,以区分传统的 PS-RZ-QPSK 信号。对上述 4 种 信号进行了背靠背系统仿真以及长距离光纤传输系 统仿真。

搭建的 PS-advanced-RZ-QPSK 系统框图如图 4 所示,其中 $E_{x,i}$, $E_{x,q}$, $E_{y,i}$ 为传输的 3 路并行数据,第 4 路数据 $E_{y,q} = E_{x,i} \oplus E_{x,q} \oplus E_{y,i}$ 。图中为了方便标 注,画出了 4 个时钟源。实际并行的 4 路调制信号 采用相同的时钟源,使用同一个时钟信号即可,所以 此方案不会增加额外的时钟源。

图 5 所示为背靠背系统中几种调制格式的误码 率和光信噪比的关系,其中虚线表示各调制信号的 理论极限值。从图中可以看出,误码率达到 10⁻³ 时,84 Gb/s 的 PS-RZ-QPSK 信号的光信噪比约为 11.4 dB,相比理论值多了 0.4 dB,而 PS-advanced-RZ-QPSK 信号的光信噪比为 11.7 dB,仅仅比前者 多了 0.2 dB,说明两种调制方案对系统误码率的影 响几乎一样,PS-advanced-RZ-QPSK 信号的误码性 能略低于 PS-RZ-QPSK。而同样条件下,84 Gb/s 的 DP-RZ-QPSK 信号的信噪比为 13 dB,比理论值 高出 0.7 dB。相比之下,PS-RZ-QPSK 比 DP-RZ-

QPSK 信号能多提供约 1.6 dB 的容限,与理论值相符。

另外可以看出相同波特率(28 GBd)条件下,PS-RZ-QPSK(84 Gb/s)信号和 DP-RZ-QPSK(112 Gb/s) 信号的误码性能。在相同误码率(10⁻³)条件下,DP-RZ-QPSK 信号的光信噪比为 14.4 dB,比 PS-RZ-QPSK 信号多出 3 dB。所以,相同误码条件下,PS-RZ-QPSK 具有最好的接收灵敏度。新型调制方案 产生的 PS-advanced-RZ-QPSK 信号误码性能与传 统方式的 PS-RZ-QPSK 信号几乎一样。

图 6显示了信号的抗色散和抗非线性性能。 图 6(a)为经光纤传输后几种系统的眼图张开度代价(EOP)性能,体现了信号对色散的容忍能力。从 图中可以看出,在相同波特率时,PS-RZ-QPSK 信 号具有更好的色散容限。而 PS-advanced-RZ-QPSK 信号的色散容限略低于传统的 PS-RZ-QPSK 信号。

图 6 各信号的抗色散和抗非线性的性能。(a) EOP 性能;(b)误码率为 10⁻³时链路长度 Fig. 6 Performance of resistance to dispersion and nonlinear effects. (a) EOP performance; (b) link length performance (BER is 10⁻³)

分析图 6(b)可得非线性效应对信号的影响。 发射光功率从-5 dB 到 5 dB 递增,光纤信道采用 环路,每 50 km 光纤进行一次掺铒光纤放大器 (EDFA)放大。图中显示的是系统误码率达到 10⁻³ 时的链路长度。图中 P_{in} 在 $-5 \sim 1$ dBm 时,由于入 纤光功率较低非线性效应并不明显,传输距离随着 入射光功率的增加而增加。入纤光功率的增加将导 致非线性效应越来越明显,从而使得达到相同误码 率条件时的传输距离大大缩短。从图中可以看出入 射光功率为1~5 dBm 之间时,系统传输距离显著 下降。当入射光功率为1 dBm 时,DP-RZ-QPSK 信 号的非线性效应开始显现出来;而 PS-RZ-QPSK 信 号在入射光功率增加到 2 dBm 时才显现出来。这 说明 PS-RZ-QPSK 信号的抗非线性效应比 DP-QPSK 信号好。图中还对比了 PS-advanced-RZ-QPSK 信号的抗非线性效应性能,从图中可以看出, 该信号具有较好的抗非线性效应能力。

从上述仿真结果可知,在相同的波特率下 PS-RZ-QPSK 信号具有更好的接收灵敏度,同时提供 了更好的抗色散和抗非线性效应能力。本文提出的 实现 PS-RZ-QPSK 信号的方案以很小的性能损失, 既保留了 PS-RZ-QPSK 信号的优势,又降低了发射 机成本。

5 结 论

理论分析了 PS-RZ-QPSK 信号的产生和不同 的实现方式,并通过仿真实验,搭建了背靠背系统和 光纤传输系统,分析了 PS-RZ-QPSK 信号与 DP-RZ-QPSK 信号的误码性能、抗色散和抗非线性效 应能力。结果说明 PS-RZ-QPSK 信号虽然减少了 一路数据的传输,但是在误码率、抗色散和抗非线性 效应上都优于 DP-RZ-QPSK 信号。主要针对 PS- RZ-QPSK 信号提出了一种新的实现方案,该方案 减少了发送端 MZM 的数量,降低了系统成本,同时 提供了较高质量的 PS-RZ-QPSK 信号。

参考文献

1 Xu Xiaogeng, Zhang Xinliang, Liu Deming et al Experimental
study on transmission performance of three different formats in
40 Gb/s optical fiber communication system [J]. Chinese J.
Lasers, 2005, 32(10): 1371~1376
徐晓庚,张新亮,刘德明 等. 40 Gb/s 光纤通信系统中不同码型
传输特性的实验研究[J]. 中国激光, 2005, 32 (10): 1371~1376

- 2 Wang Xiuge. Research on Key Technologies of Coherent Optical Communication System [D]. Wuhan: Huazhong University of Science and Technology, 2008. 28~72 王修阁. 相干光通信若干关键技术的研究[D]. 武汉:华中科技 大学, 2008. 28~72
- 3 Jinnan Zhang, Yue Gu, Xueguang Yuan et al.. New control algorithm for automatic PMD compensation system [J]. Chin. Opt. Lett., 2012, 10(3): 030607
- 4 Wu Ting. Research of Polarization Multiplexing Technology in 80 Gbit/s Optical Fiber Communication System [D]. Wuhan: Huazhong University of Science and Technology, 2009. 21~48 吴 婷. 80 Gbit/s 光纤通信系统偏振复用技术研究[D]. 武汉: 华中科技大学, 2009. 21~48
- 5 M. Karlsson, E. Agrell. Which is the most power-efficient modulation format in optical links? [J]. Opt. Express, 2009, 17: 10814~10819
- 6 Erik Agrell, Magnus Karlsson. Power-efficient modulation formats in coherent transmission systems [J]. J. Lightwave Technol., 2009, 27(22): 5115~5125
- 7 P. Poggiolini, G. Bosco, A. Carena *et al.*. Performance evaluation of coherent WDM PS-QPSK (HEXA) accounting for non-linear fiber propagation effects [J]. *Opt. Express*, 2010, 18(11): 11360~11371

8 Li Jia. Principle of Mach-Zehnder electro-optic modulator and its applications in optical fiber communication[J]. Journal of Hunan Industry Polytechnic, 2010, 10(3): 15~17

李 佳. 马赫-曾德尔电光调制器原理及其在光纤通信中的应用 [J]. 湖南工业职业技术学院学报,2010,10(3):15~17

9 Liu Huiyang, Zhang Xiaoguang, Xu Wei *et al.*. The principle and simulation of optical DQPSK modulation formats[J]. *Study* on Optical Communications, 2008, (5): 1~3 刘慧洋, 张晓光, 许 玮等. 光 DQPSK 调制格式原理及仿真

[J]. 光通信研究, 2008, (5): 1~3 10 Xu Kun, Zhou Guangtao, Wu Jian *et al.*. Comparisons of high speed optical modulation formats using LiNbO₃ optical waveguide modulators[J]. Journal of Beijing University of Posts and Telecommunications, 2004, $27(4): 50 \sim 54$

徐 坤,周光涛,伍 剑等.基于 LiNbO3 光波导调制器高速光

码型调制的比较[J]. 北京邮电大学学报,2004,27(4):50~54

11 Betti Silvello, De Marchies Giancarlo, Iannone Eugenio. Coherent Optical Communications Systems[M]. New York; John Wiley & Sons, 1995

栏目编辑:胡 冰